Energy harvesting by magnetostrictive material (MsM) for powering wireless sensors in SHM
نویسندگان
چکیده
A new class of vibrational energy harvester based on Magnetostrictive material (MsM) Metglas 2605SC is deigned, developed, and tested in building practical energy harvesting wireless sensor networks. Compared to piezoelectric material, Metglas 2605SC offers advantages including ultra-high energy conversion efficiency, high power density, longer life cycles without depolarization issue, and flexibility to operate in strong ambient vibrations. To enhance the energy conversion efficiency and shrink the size of the harvester, Metglas is annealed in the direction normal to the axial strain direction without the need of electromagnet for applying bias (static) magnetic field. To seamlessly integrate with a newly developed wireless sensor at NC State, a prototype design for the MsM harvester is proposed. An analytical model is developed for the harvesting using an equivalent electromechanical circuit. The model resulting in achievable output performances of the harvester powering a resistive load and charging a capacitive energy storage device, respectively, is quantitatively derived. An energy harvesting module, which powers a wireless sensor, stores excess energy in an ultracapacitor is designed on a printed circuit board (PCB) with dimension 25mm×35mm. The main functionalities of the circuit include a voltage quadrupler, a 3F ultracapacitor, and a smart regulator. The output DC voltage from the PCB can be adjusted within 2.0~5.5V. In experiments, the maximum output power and power density on the resistor can reach 200 μW and 900 μW/cm, respectively. For a working prototype, the average power and power density during charging the ultracapacitor can achieve 576 μW and 606 μW/cm respectively, which are much higher than those of most piezo-based harvesters.
منابع مشابه
Vibration energy harvesting by magnetostrictive material
A new class of vibration energy harvester based on magnetostrictive material (MsM), Metglas 2605SC, is designed, developed and tested. It contains two submodules: an MsM harvesting device and an energy harvesting circuit. Compared to piezoelectric materials, the Metglas 2605SC offers advantages including higher energy conversion efficiency, longer life cycles, lack of depolarization and higher ...
متن کاملEnergy Harvesting for Structural Health Monitoring Sensor Networks
This paper reviews the development of energy harvesting for low-power embedded structural health monitoring (SHM) sensing systems. A statistical pattern recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities...
متن کاملAn Investigation into Resonant Frequency of Triangular V-Shaped Cantilever Piezoelectric Vibration Energy Harvester
Power supply is a bottle-neck problem of wireless micro-sensors, especially where the replacement of batteries is impossible or inconvenient. Now piezoelectric material is being used to harvest vibration energy for self-powered sensors. However, the geometry of a piezoelectric cantilever beam will greatly affect its vibration energy harvesting ability. This paper deduces a remarkably precise an...
متن کاملDevelopment and Successful Application of a Tree Movement Energy Harvesting Device, to Power a Wireless Sensor Node
Wireless sensor networks are becoming increasingly more common as a means to sense, measure, record and transmit data for scientific and engineering evaluation, remotely and autonomously. Usually, remotely located sensor nodes are powered by batteries which are recharged by solar or wind energy harvesters. Sometimes nodes are located in areas where these forms of energy harvesting are not possi...
متن کاملMultimodal Energy Harvesting Skin Using Piezoelectric Unimorph Shell Structure
1 Introduction Energy harvesting (EH) research area has been emerged to build self-powered wireless electrical devices such as wireless sensors by collecting ambient or wasted energy. This EH technology is highly demanding because wireless sensors are increasingly used in the areas of structural health monitoring (SHM), building automation, and so on. The battery, a current power source for wir...
متن کامل